KENDRIYA VIDYALAY, CTPS, CHANDRAPURA WINTER BREAK HW(CLASS-9)

1) If the perimeter of an equilateral triangle is 180 cm . Then its area will be:
a. $900 \mathrm{~cm}^{2}$
b. $900 \sqrt{ } 3 \mathrm{~cm}^{2}$
c. $300 \sqrt{ } 3 \mathrm{~cm}^{2}$
d. $600 \sqrt{ } 3 \mathrm{~cm}^{2}$
2) The sides of a triangle are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m respectively. The area of the triangle is:
a. $1320 \mathrm{sq} . \mathrm{m}$
b. 1300 sq.m
c. 1400 sq.m
d. 1420 sq.m
3) The sides of a triangle are in the ratio 12: 17: 25 and its perimeter is 540 cm . The area is:
a. $1000 \mathrm{sq} . \mathrm{cm}$
b. 5000 sq.cm
c. $9000 \mathrm{sq} . \mathrm{cm}$
d. 8000 sq.cm
4) The center of the circle lies in \qquad of the circle.
a. Interior
b. Exterior
c. Circumference
d. None of the above
5) The longest chord of the circle is:
a. Radius
b. Arc
c. Diameter
d. Segment
6) Equal \qquad of the congruent circles subtend equal angles at the centers.
a. Segments
b. Radii
c. Arcs
d. Chords
7) In the below figure, the value of $\angle A D C$ is:
a. 60°
b. 30°
c. 45°
d. 55°

8) In the given figure, find angle OPR.
a. 20°
b. 15°
c. 12°
d. 10°

9) In the given figure, $\angle A O B=90^{\circ}$ and $\angle A B C=30^{\circ}$, then $\angle C A O$ is equal to:
(a) 30°
(b) 45°
(c) 60°
(d) 90°

10) $A B C D$ is a cyclic quadrilateral such that $A B$ is a diameter of the circle circumscribing it and $\angle A D C=140^{\circ}$, then $\angle B A C$ is equal to:
(a) 30°
(b) 40°
(c) 50°
(d) 80°

11) In the given figure, if $\angle O A B=40^{\circ}$, then $\angle A C B$ is equal to
(a) 40°
(b) 50°
(c) 60°
(d) 70°

12) In the given figure, if $\angle A B C=20^{\circ}$, then $\angle A O C$ is equal to:
(a) 10°
(b) 20°
(c) 40°
(d) 60°

13) In the given figure, if $O A=5 \mathrm{~cm}, A B=8 \mathrm{~cm}$ and $O D$ is perpendicular to $A B$, then $C D$ is equal to:
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 5 cm

14) In the given figure, $B C$ is the diameter of the circle and $\angle B A O=60^{\circ}$. Then $\angle A D C$ is equal to
(a) 30°
(b) 45°
(c) 60°
(d) 120°

15) In the given figure, if $\angle D A B=60^{\circ}, \angle A B D=50^{\circ}$, then $\angle A C B$ is equal to:
(a) 50°
(b) 60°
(c) 70°
(d) 80°

16) In the given figure, if $A O B$ is a diameter of the circle and $A C=B C$, then $\angle C A B$ is equal to:
(a) 30°
(b) 45°
(c) 60°
(d) 90°

17) The quadrilateral whose all its sides are equal and angles are equal to 90 degrees, it is called:
a. Rectangle
b. Square
c. Kite
d. Parallelogram
18) The sum of all the angles of a quadrilateral is equal to:
a. 180°
b. 270°
c. 360°
d. 90°
19) A trapezium has:
a. One pair of opposite sides parallel
b. Two pairs of opposite sides parallel to each other
c. All its sides are equal
d. All angles are equal
20) A rhombus can be a:
a. Parallelogram
b. Trapezium
c. Kite
d. Square
21) A diagonal of a parallelogram divides it into two congruent:
a. Square
b. Parallelogram
c. Triangles
d. Rectangle
22) In a parallelogram, opposite angles are:
a. Equal
b. Unequal
c. Cannot be determined
d. None of the above
23) The diagonals of a parallelogram:
a. Equal
b. Unequal
c. Bisect each other
d. Have no relation
24) Each angle of the rectangle is:
a. More than 90°
b. Less than 90°
c. Equal to 90°
d. Equal to 45°
25) The angles of a quadrilateral are in the ratio 4: 5: 10: 11. The angles are:
a. $36^{\circ}, 60^{\circ}, 108^{\circ}, 156^{\circ}$
b. $48^{\circ}, 60^{\circ}, 120^{\circ}, 132^{\circ}$
c. $52^{\circ}, 60^{\circ}, 122^{\circ}, 126^{\circ}$
d. $60^{\circ}, 60^{\circ}, 120^{\circ}, 120^{\circ}$
26) Three angles of a quadrilateral are $75^{\circ}, 90^{\circ}$ and 75°. The fourth angle is
(a) 90°
(b) 95°
(c) 105°
(d) 120°
27) $A B C D$ is a rhombus such that $\angle A C B=40^{\circ}$. Then $\angle A D B$ is
(a) 40°
(b) 45°
(c) 50°
(d) 60°
28) Which of the following is not a quadrilateral?
(a) Kite
(b) Square
(c) Triangle
(d) Rhombus
29) In triangle $A B C$, if $A B=B C$ and $\angle B=70^{\circ}, \angle A$ will be:
a. 70°
b. 110°
c. 55°
d. 130°
30) For two triangles, if two angles and the included side of one triangle are equal to two angles and the included side of another triangle. Then the congruency rule is:
a. SSS
b. ASA
c. SAS
31) A triangle in which two sides are equal is called:
a. Scalene triangle
b. Equilateral triangle
c. Isosceles triangle
d. None of the above
32) The angles opposite to equal sides of a triangle are:
a. Equal
b. Unequal
c. supplementary angles
d. Complementary angles
33) If $A B C$ is an equilateral triangle, then each angle equals to:
a. 90°
B. 180°
c. 120°
d. 60°
34) Which of the following is not a criterion for congruence of triangles?
(a) SAS
(b) ASA
(c) SSA
(d) SSS
35) In $\triangle P Q R, \angle R=\angle P$ and $Q R=4 \mathbf{c m}$ and $P R=5 \mathbf{c m}$. Then the length of $P Q$ is
(a) 2 cm
(b) 2.5 cm
(c) 4 cm
(d) 5 cm
36) If $A B=Q R, B C=P R$ and $C A=P Q$, then
(a) $\triangle \mathrm{PQR} \cong \triangle \mathrm{BCA}$
(b) $\triangle \mathrm{BAC} \cong \triangle \mathrm{RPQ}$
(c) $\triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$
(d) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
37) If $\Delta A B C \cong \Delta P Q R$, then which of the following is not true?
(a) $A C=P R$
(b) $B C=P Q$
(c) $\mathrm{QR}=\mathrm{BC}$
(d) $A B=P Q$
38) In $\triangle A B C, B C=A B$ and $\angle B=80^{\circ}$. Then $\angle A$ is equal to
(a) 40°
(b) 50°
(c) 80°
(d) 100°
39) $A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (see Fig. 7.18). Show that $C D$ bisects $A B$.

Fig. 7.18
40). In right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $A B$. C is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see Fig. 7.23). Show that:
(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ is a right angle.
(iii) $\triangle \mathrm{DBC} \cong \triangle \mathrm{ACB}$
(iv) $C M=1 / 2 A B$

Fig. 7.23
41). Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
42. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=$ BQ (see Fig. 8.20). Show that:
(i) $\triangle \mathrm{APD} \cong \triangle C Q B$
(ii) $A P=C Q$
(iii) $\triangle \mathrm{AQB} \cong \triangle C P D$
(iv) $A Q=C P$
(v) APCQ is a parallelogram

Fig. 8.20
43. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$, respectively. Show that the quadrilateral PQRS is a rhombus.
44. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to BC intersects AC at D. Show that
(i) D is the mid-point of $A C$
(ii) $M D \perp A C$
(iii) $C M=M A=1 / 2 A B$
45. Three girls, Reshma, Salma and Mandip, are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, and Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?
46. Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.

ALL THE BEST- B N SINGH

